
Unsupervised Anomaly Detection System using
Next-generation Router Architecture

Richard Rouil Nicolas Chevrollier Nada Golmie
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract— Unlike many intrusion detection systems that rely
mostly on labeled training data, we propose a novel technique for
anomaly detection based on unsupervised learning. We apply this
technique to counter denial-of-service attacks. Initial simulation
results suggest that significant improvements can be obtained.
We discuss an implementation of our anomaly detection system
in the ForCES router architecture and evaluate it using recorded
attack traffic.

I. I NTRODUCTION

The research community has expressed much interest re-
cently to better understand, model and mitigate Denial-of-
Service (DoS) attacks [1] [2] [3]. A DoS attack may be
characterized as an explicit attempt to exhaust key resources
(e.g. network bandwidth, computing power, operating data
systems structures) of the system under attack. Current defense
mechanisms against DoS attacks consist of three components:

• Prevention: ingress filtering, anti-spoofing mechanisms.
• Detection: identifying anomalies and tracking suspicious

traffic patterns.
• Response: rate limiting, filtering [4] or traceback [5].

Nevertheless, even if they are conceptually simple and are
beginning to be well-documented, DoS attacks can usually
bypass existing defense mechanisms through slight variations
in their forms.

Edge networks often include Intrusion Detection Systems
(IDS) in order to mitigate some forms of DoS attacks. Most
of these IDS employ signature detectors [8], that scan incom-
ing traffic, match it to predefined attack patterns, and raise
adequate alarms in case of a hit. Subsequent actions taken by
other components of the IDS include attack packet filtering,
flow blocking, and traceback. In order for this technique to
work, accurate characterizations of attack patterns must keep
up with a multitude of DoS attack flavors and versions, which
is problematic in practice.

Limitations of existing techniques have spurred interest in
alternatives based on statistical learning. The basic thrust is to
apply known learning techniques (both supervised and unsu-
pervised) to network traffic in order to extract salient features
and characteristics for attack traffic detection. Concurrently,
advances in router architecture including the availability of
next generation specialized network processors have made
the implementation of these traditionally complex algorithms
possible directly in forwarding hardware. Thus implementing
powerful but computational intensive statistical algorithms on
fast network processors holds the promise that we can perform

packet inspection and forwarding at line speed and so to guard
against the problem of DoS attacks.

In this paper, we propose a novel Anomaly Detection Sys-
tem (ADS). Like many such schemes, it functions by defining
a baseline of normal or expected behavior and then deter-
mining if the current behavior observed deviates sufficiently
from what is expected. However, unlike standard supervised
learning techniques that imply the existence of a set of labeled
training data, or a sequence of input/output pairs where the
output is the desired classification, we use anomaly detection
that does not require anya priori knowledge about the network
[7] [10]. This is commonly known as unsupervised learning.
Our concern is that training data, if available, is limited to
past traffic trends that may not reflect the nature of future
attacks. Our approach is to combine unsupervised learning
techniques with anomaly system detection in order to createa
robust mechanism to counter novel attacks. Our ADS works by
grouping packets based on IP header fields into a small number
of aggregates or so-called clusters. We show how tracking
the behavior of these clusters over time can give additional
clues about the likelihood of an attack. We investigate the
implementation of ADS in the context of a network processor
based router architecture and give the details of our design
implemented on an Intel IXP 2800 development platform1.

The outline for the remainder of this paper is as follows.
Section II describes the proposed ADS and provides simu-
lation results for its performance. Section III considers the
implementation of ADS on a next-generation router architec-
ture platform and discusses the performance results obtained
from the hardware. The final section discusses future research
directions.

II. A NOMALY DETECTION SYSTEM

In this section, we describe ADS, the proposed anomaly
detection system, which consists of two main components, (1)
a clustering algorithm, (2) and an anomaly detection scheme.
We will start by describing the clustering algorithm and then
highlight some techniques that can be used for anomaly
detection.

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily thebest available
for the purpose.



A. Clustering Algorithm

Our goal is to aggregate the network traffic into a relatively
small number of clusters, between 5 and 20. The clustering is
done using the k-means algorithm [9], with batch processing
for the training set. A n-dimensional vector (including theIP,
TCP or UDP packet headers) represents each packet going on
a network link. We use a splitting procedure to initialize the
centroids in the algorithm. First, we calculate the centroid of
the training packet samplec, and then perturb it by a small
vectorε to get centroidsc+ε andc−ε. Applying the k-means
algorithm gives two optimized centroidc1 and c2. We then
repeat the splitting and optimization process for a predefined
number of iterations. We define the diffusion of a cluster by
the mean distance between each sample of a given cluster and
the centroid of this cluster. At each splitting step, this diffusion
is compared to a given threshold. The less diffused a clusteris,
the more compacted it is. If the cluster is compacted enough,
no further splitting occurs. The algorithm uses the Manhattan
distance measure defined as follows:

‖x − y‖ = (

n∑

j=1

|xj − yj |), (1)

In order to avoid scaling issues among different dimensions,
each value is first normalized by its maximum value during
the epoch. We have tested other distance measures, but the
Manhattan distance, besides being as efficient as the others,
appears to be the lightest in terms of computation time. The
base algorithm initially introduced in [6] is described below.

Compute centroid of training sample;
Split centroid into 2 centroids;
Run k-means algorithm to optimize 2 centroids;
for N iterationsdo

foreach centroid do
if cluster associated is not sufficiently compacted
then

Split into 2 centroids;
Run k-means algorithm to optimize 2
centroids;

end
end

end

A merging procedure is performed at the end of the al-
gorithm, in order to combine identical clusters, or clusters
with close centroids. The diffusion, merge threshold, and the
perturbationε are chosen based on raw data traffic analysis
and simulation results.

These clusters can be used as part of a passive strategy to
attenuate DoS attacks even without explicit detection. Since
similar packets will tend to cluster together, bad packets
will likely end up in the same cluster. This assumption is
particularly likely to be true for brute-force distributedDoS
attacks where packets share similar characteristics such as a
destination IP address or a packet size. Fig. 1 depicts the

Bad packets

...

...

.

.

.

Cluster

Computation

Map to

 Nearest

Cluster
Packets Packets

Scheduling

Algorithm

Centroids

Rate limit packets
from bad cluster

Fig. 1. DoS Attack Passive Reaction.

dynamics of a possible passive reaction. On each router output
line card, clusters are mapped to different queues. Packets
entering the system are compared to the centroids computed,
so each packet mapped to centroid i ends up in queue i. By
forcing the illegitimate or bad traffic to be clustered into one
or a small number of clusters and then mapped into a small
number of queues, a rate-limiting effect is accomplished.

B. Anomaly Detection

As mentioned previously, clustering represents the first step
in anomaly detection. The next step consists of tracking
the changes of each cluster’s centroid over time. Here, we
consider the use of three different centroid characteristics to
determine and track changes: compactness, number of samples
per cluster, and cluster dimensions. We discuss each one
in turn. The observations are based on analysis of several
hundred traces of attack traffic collected from simulationsand
measurements of networks of varying size (50 - 500 nodes).

Compactness
Most brute force DoS attack flows analyzed are characterized
by a low diffusion (dense flows). Thus, a low diffusion
represents a partial attack indicator.

Sample size
Another indicator of attack traffic is a cluster with a very large
size relative to other clusters detected during the same time
period. Since most attack traffic has similar characteristics (e.g.
the same destination address, port ID) it generally ends up in
the same cluster.

Cluster dimensions
Finally, we observe that at the beginning and the end of an
attack cluster dimensions such as the IP address, protocol
number, packet size vary drastically as the mixture of packets
in the network changes significantly.

All the observations discussed above should raise together
and individually some type of an attack flag that requires
further investigations on a specific cluster, activate filtering
for traffic related to the suspicious cluster identified and assign
strict queuing policies to strengthen the passive reaction.



Fig. 2. Simple Test Network Topology.

C. Performance Evaluation

We evaluate the clustering algorithm presented earlier and
show how the observations discussed previously can be used
to effectively detect anomalies and potential DoS attacks.We
use OPNET to simulate a UDP flood attack in a 500-node
network.

1) Simulation Set-up:Fig. 2 shows the topology of the
network simulated by OPNET. It consists of a total of 500
end-user devices, 11 subnets, 3http servers, oneftp server
and one mail server. The legitimate traffic is a combination
of http, smtpand ftp packets arranged as follows. The major
contribution comes fromhttp which represents 90% of the
total traffic in bits, followed bysmtp and ftp traffic which
contribute 5% each. Each application is characterized by a
default OPNET profile and attributes. Similar to the attack
model developed by Gregg et al [11], 3 attackers from 3
different subnets try to overflow the bottleneck link of the
network by sending UDP packets from spoofed IP addresses.
Out of the 10-minute simulation, the network is under attack
for 4 minutes. We ran the simulation for a maximum of 16
centroids and each packet header is represented by a six-
dimensional vector that contains: (1) a source address, (2)
a destination address, (3) a protocol type, (4) a packet size,
(5) a source port, and (6) a destination port. While mapping
centroids to output buffers provides a passive reaction to most
DoS attack types, further analysis of the clustering results can
provide a more active response to a DoS attack.

2) Results Analysis:The analysis of the results reveals
the following insights. During periods of no congestion, the
bottleneck link is about 65% full on average, while during the
congested period, the offered load reaches over 100 percent
of capacity. In the case of n output queues, the length of each
queue is 1/n of the length of the aggregate queue, so that there
is no net increase in memory usage.

TABLE I

PERCENTAGE OF PACKETS DROPPED PER SCENARIO

Legitimate traffic illegitimate traffic

Single Aggregate queue 4.11 9.7
8 queues + passive reaction 1.11 18.1
16 queues + passive reaction 0.22 20.4

First, we analyze the results of the passive reaction. TableI
shows the percentage of legitimate packets dropped (first col-
umn) and the number of illegitimate packets dropped (second
column) when there is a single output queue (first row), 8
output queues combined with the passive reaction (second
row) and 16 output queues combined with the passive reaction
(third row). We note that the percentage of legitimate packets
dropped decreases when the passive reaction is active. This
percentage is relatively low because the average is done over
the whole simulation and the loss occurs only during the
period when the network is under attack. On the other hand,
we observe that more illegitimate packets are dropped as the
number of queues increases. As the illegitimate traffic ends
up in a smaller proportion of the clusters, these clusters will
contain a larger number of packets and will likely overflow
more often, resulting in a higher packet drop rate.

Further analysis of the simulation results obtained allows
us to verify some of the anomaly detection observations
noted previously, concerning the sample size and the cluster
compactness.

The normalized diffusion is shown over time in Fig. 3.
For the sake of presentation clarity, we show two clusters
(Cluster 1 and Cluster 2) out of the eight obtained in the
experiment. Cluster 1 is related to legitimate traffic while
Cluster 2 represents the attack traffic. Each of these clusters
represent at least 10% of the overall bandwidth making their
characterization statistically significant (the remaining clusters
are either similar to Cluster 1 or have very little traffic
associated with them and therefore are not significant to the
results shown here.)

In Fig. 3 the diffusion of Cluster 1 varies around 2 and 4
until the attack is scheduled to take place around 250 seconds.
At that time, we note a sharp dive of the Cluster 2 diffusion
that goes down to 0. We also notice a slight increase in the
overall fluctuations of the diffusion of Cluster 1 that is being
affected by the sudden drop in Cluster 2 diffusion. We verify
that a similar pattern is effecting other clusters that are similar
to Cluster 1.

The very low diffusion value (which indicates that packets
related to the cluster are very close to its centroid, thus that the
cluster is extremely compact) exhibited by Cluster 2 indicates
that the traffic being assigned to Cluster 2 has very similar or
almost identical characteristics. While, a low diffusion byitself
may not necessarily indicate attack traffic, this combined with
an assessment of a large cluster should increase the likelihood
of detecting an attack. Note that the slight increase in the
diffusion for the other clusters is due to the clusterization
algorithm adapting to the arrival of a a new traffic pattern,
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which in this case represents the attack traffic.
We turn now to cluster dimensions. In Fig. 4, we plot over

time the centroids of all six parameters that were used to
characterize Cluster 2, the cluster containing attack traffic.
In this case, we observe a significant variation in the cluster
centroids coinciding with the attack that is occuring between
200 and 500 seconds. When the attack ends at 500 seconds, we
note that the centroid values go back to their pre-attack values.
This represents another strong indicator for the presence of
attack or suspicious traffic.

In summary, we can identify at least three indicators for
detecting the presence of suspicious or attack traffic. Since
we are mostly interested with attacks that involve large flows
and occupy large percentage of the bandwidth available, we
therefore use the flow or sample size as the first indicator. We
can then look at cluster compactness that indicates how packets
in the same cluster are related to each other. A large number
of packets that are very similar can point to a brute-force-
type attack where packets have very similar characteristics.
Finally, we find that tracking the cluster dimensions, whichare
the parameters used in the clusterization, and their variations
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Fig. 5. Next-Generation Router Architecture.

over time can be another effective indicator. While the sample
size forms the basis for any detection strategy, we see a
combination of compactness and dimension variations as fairly
effective in detection attack traffic.

III. H ARDWARE IMPLEMENTATION

The emergence of new router architectures separating con-
trol and forwarding planes as shown in Fig. 5 that separates
the control and forwarding planes facilitates the distribution of
control information such as intrusion detection notifications
and alarms across a wide area network. This represents a
step towards the deployment of effective distributed protocols
for intrusion detection. In this new architecture, the Network
Element (NE) is logically separated into one or more Control
Elements (CEs) and one or more Forwarding Elements (FEs).

In this paper we focus on the FE and the availability of
highly specialized network processor units such as the Intel
IXP 2800 in order to implement the computationally intensive
clustering algorithm that was described previously.

A. Clustering Algorithm Implementation

In order to implement the clustering algorithm in hardware,
we use the Intel IXDP2800 Advanced Development Platform.
This is composed of two IXP2800 network processors, and
is designed to support applications with traffic up to 10
Gbit/s. Each network processor contains a fast path that
uses highly optimized microengines, and an XScale core for
additional packet processing. Ideally, to achieve high speed
packet forwarding, packets processing should remain in the
microengines. Fig. 6 shows the main elements of the NP
platform that are relevant to our system.

1) Traffic going through the network processor is sampled
and specific parameters such as the IP address, port
number, source and destination addresses, and protocol
IP, are extracted from each packet. Due to the very high
speed traffic and because the parameter extraction occurs
in the NP core, our implementation can achieve only a
10% sampling rate of the overall traffic seen. Although
this may represent a limitation in terms of the statistics
collected, 10% of a 1 Gbit/s link still represents a lot of
traffic and should provide a good approximation for the
overall traffic.

2) The XScale core operates in two phases. In the first
phase, samples are extracted by the microengines. Once
a predefined training set number is reached, the core
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stops collecting data and starts computing the cluster
centroids.

3) At that point, the Control Unit receives information
about the clusters from the core and decides on the
next actions to follow. This unit can be either local or
remotely connected. We have used a simple co-located
control unit for our experimentation.

4) & 4’) The Control Unit decides if the centroids need
to be updated. It may also interact with the queue
management to apply policies on the queues. The queue
scheduler implements a Deficit Round Robin (DRR)
algorithm on the queues of each port. The Control Unit
limits the number of credits available to each queue thus
rate-limiting bad traffic.

5) A filtering mechanism can be installed in the ingress
side of the platform in order to stop suspicious traffic
before it enters the router. Our work has been concerned
with the clustering algorithm and has not yet included
any input filters.

B. Testbed and Hardware Performance Results

Our experiment environment consists of the IXDP2800
platform running with VxWorks on the XScale core. This
platform provides an interface with 10x1-Gigabit Ethernet
ports. To generate traffic, we use 4x1-Gigabit Ethernet ports
from a Smartbits 6000B Performance Analysis System. As
shown in Fig. 7, we use three ports to generate traffic and one
to monitor and received the routed packets. The test traffic
consists of the following:

• Normal TCP: 150 TCP flows totaling 800 Mbit/s.
• Normal UDP: 50 UDP flows totaling 150 Mbit/s.
• Attack UDP: 5 UDP flows representing 400 Mbit/s.

The proportion chosen for the mix ofNormal TCP and
Normal UDP corresponds to realistic Internet traffic where
a ratio of TCP to UDP traffic is typically 8 or 9 to 1 (Note
that this ratio can vary slightly between different networktypes
without affecting our results). While for bothNormal TCPand
Normal UDP flows the parameters used for the source and
destination addresses, the source and destination ports, and
packet sizes were different, all 5Attack UDPflows had the
same destination address, port and packet size. Only the source

Smartbit generator
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IXDP2800 platform

port 0
   

port 1

port 2

port 3
 

Fig. 7. Testbed setup.
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parameters for theAttack UDPflows are varied to emulate a
distributed 5-node UPD flood attack. Also note that theAttack
UPD traffic consists of a relatively low number of flows that
use a lot of bandwidth.

Next we will discuss the hardware performance of the clus-
tering algorithm in terms of computation speed and packets
dropped in the output queues.

1) Computation time:The real implementation allows us
to quantify the time it takes to compute the clusters. This
time depends on the number of samples collected and the
number of centroids the algorithm computes. Fig. 8 shows the
computation time for a training set of 256, 512, 1024, 2048,
and 4096 packets, for 8, 16, and 32 centroids.

With training set sizes less than 2048, the computation time
remains less than 50 ms regardless of the number of centroids
used. For larger training set sizes, the computation time
increases with the number of centroids used. The difference
in computation time for 8 and 32 centroids is around 90 ms
for a training set of 4096. We use a training set of 2048
and 16 centroids, which represents a good trade-off between
the implementation computation time and the accuracy of the
clustering results.

2) Queue Management Policy:As described previously
( II-A), by mapping each cluster to an outgoing queue and
setting a queue management policy to rate-limit outgoing traf-
fic based on information from the anomaly detection control
unit, we can effectively mitigate a DDoS attack that generates
a large amount of traffic. Since attack traffic ends up in the
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Fig. 10. Packets lost per class using clustering algorithm and 16 queues.

same cluster and is mapped to a single queue, attack traffic is
dropped more heavily.

Fig. 9 and Fig. 10 highlight the performance of this sort of
passive strategy in the anomaly detection system by showing
the number of packets dropped per traffic flow type. Fig. 9
shows system behavior without ADS using one output queue
size equal to 96 packets and a bandwidth of 1024 bytes per
round. Fig. 10 shows the behavior of the ADS using the
clustering algorithm with 16 clusters mapped to 16 queues
of size 6 packets, and a bandwidth of 64 bytes per round. In
Fig. 9 the packet loss is around 60% for all traffic types, while
in Fig. 10 theAttack UDPflow incurs a much heavier packet
loss rate of 90%. The other traffic types are less affected with
packet loss of around 35%.

IV. CONCLUSION AND FUTURE WORK

In this article, we have demonstrated the use of packet
clustering based on unsupervised learning to effectively mit-
igate DDoS attacks. Based on characteristics extracted from
sampled traffic, we can derive criteria that can be used to
trigger anomaly detection alarms. These criteria include packet

similarities and how they are related to one another, the amount
of traffic sharing the same relations, and the evolution of these
characteristics over time.

We propose a suitable packet clustering algorithm and
implement it in simulation and on a network processor
platform. This shows the implementation feasibility of such
computationally intensive algorithm by taking advantage of
the ability of next-generation routers to perform computation
in the forwarding plane and at line speed while other more
intelligent tasks to analyze and derive information from traffic
monitoring occurs in the control plane. In our implementation,
packet header information is extracted and compared to current
clusters characteristics (centroids) at line speed, whilethose
centroids are only updated periodically in the background.

We show that combining this clustering mechanism with
a simple queue management policy that limits the size of the
output buffers, leads to a selective packet dropping that mainly
targets attack traffic. Additionally, we believe that anomaly
detection triggers can be used to adaptively devise these queue
management policies.

Future work will include implementation of filter controls
and distributed mechanisms to share clusters information be-
tween several nodes to enable concerted actions.
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